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熱とは

熱とは，

系に含まれる膨大な数（アボガドロ数 個程度）の
ミクロな粒子に運動や振動をさせることができるエネルギーの指標

熱量は，そのエネルギーの量のことであり，単位は J (Jule)

熱は，系が熱的に動作する際の動作経路に応じたエネルギーの
流れとして与えられ，経路変数である

他の経路変数として，仕事量がある，これに対して，熱力学系にお
けるエネルギーを含む他の変数は状態に応じて（熱平衡時の）値
が決まる状態変数である

熱力学が煩雑であり理解しにくい理由は，経路変数である熱を扱
い，また，後述する不可逆過程を扱う学問であることが大きい

236.02 10AN
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（１モルは アボガドロ数（ 個）から成る気体の量のこと）

ボイル・シャルルの法則

PV nR
T

蒸気機関の発明に始まる産業革命とともに，熱力学が学問として発
展した

実際に観測されるマクロな物理現象の仕組みを体系化したものであ
り，さまざまな科学技術のよりどころとなる学問としてその後の物理
学，化学に大きな影響を与えてきた

始まりはボイル・シャルルの法則の発見から

BPV nRT Nk T 理想気体の状態方程式

（気体によらず一定）

P V T圧力 体積 絶対温度

（気体分子1個当りに対する気体定数）

2/Pa N m
3m K

8.31R

nモル数

/J K mol

/J K231.38 10B
A

Rk
N

ボルツマン定数

236.02 10AN

気体定数N気体分子の個数
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ボイル・シャルル法則

HT
P

V

MT

LT

PV nRT

状態図の様子PV
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内部エネルギー

内部エネルギー

系に含まれる気体分子などの膨大な数のミクロ粒子の不規則な運動
に伴う運動エネルギー（注1）の総和として与えられる

（注1） 厳密には分子間ポテンシャルエネルギーも含まれるが，気体の自由運動にお
いては無視して考える

ミクロ粒子（質量 ，速度 ）

系 （内部エネルギー ）U

vm
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気体粒子の描像から内部エネルギーを導出

xmvxmv

l

l

l
x

y
z

熱力学 6

壁



( ) 2t x x xf mv mv mv１個の気体粒子が壁と1回衝突した時の力積

2
xv
l１個の気体粒子が1秒間に壁に衝突する回数

１個の気体粒子が壁に与える力（1秒間に壁に与える力積）

2

2
x x

t
v mvf f
l l

N個の気体粒子が壁に与える平均の力

2

21
3

xm v
F N f N

l
m v

N
l

1個の気体粒子の２乗平均速度
2 2 2 2

x y zv v v v

2 2 2 21
3x y zv v v v

気体粒子の描像から内部エネルギーを導出
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2 2

2 3
1 1
3 3

m v m vFP N N
l l V

N個の気体粒子が壁に与える平均圧力

21
3

PV Nm v

気体の状態方程式との関係から

21
3BPV nRT Nk T Nm v

21 3
2 2 Bm v k T 気体分子1個当りの平均運動エネルギー

系の内部エネルギー（系に含まれる気体分子の運動エネルギーの総和）

気体粒子の描像から内部エネルギーを導出

3 3
2 2BU Nk T nRT
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粒子の自由度とエネルギー

３次元運動する粒子１個の平均運動エネルギー
21 3

2 2 Bm v k T

ｘ，ｙ，ｚ 方向に対する粒子１個の平均運動エネルギー

2 2 21 1 1 1
2 2 2 2x y z Bm v m v m v k T

各運動の自由度に対して，それぞれ が割り当てられる
1
2 Bk T

２原子分子の回転運動や結晶における熱振動，等，運動の自由度

が増えるごとに が割り当てられる
1
2 Bk T
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系に熱量 のエネルギーを与えると，一部は仕事 に変換
され（外部に放出され），残りは系の内部エネルギーの増大 に使わ
れる

熱力学第1法則（熱に対するエネルギー保存則）

熱力学第1法則

U
Q

Q U W U P V

Q

W P V

系

U
1 2( ) ( )U T U T

W P V
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d Q dU d W dU PdV

熱力学第1法則の微分形

（熱力学では，経路変数 ， の微少量には を用いる）dWQ



理想気体の比熱

モル比熱（１モルの気体温度を1K高めるのに必要な熱量）

定積モル比熱 （ として１モルの気体温度を1K高めるのに
必要な熱量）

VC

V
V V

d Q U dUC
dT T dT

0dV

定圧モル比熱 （ として１モルの気体温度を1K高めるのに
必要な熱量）

PC 0dP

P
P P P P

V

d Q U V dU RTC P P
dT T T dT T P

C R

3
2VC R自由度3の1モルの理想気体（ ）の場合

3
2

U RT

VdU C dT
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準静的変化の解析

1V

1 1 1( , , )A P V T

2 2 1( , , )B P V T

2 1 2( , , )C P V T

2V

1P

2P

準静的変化＝ゆっくりじわじわ変化＝可逆変化

＝すべての経路上の点で熱平衡を実現しながら変化

すべての経路上の点での変数の値が，その点の
（圧力 ，体積 ，温度 などの）状態量で決まるP V T

(1) 等温変化

(2) 等圧変化

(3) 等積変化
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1V

1 1 1( , , )A P V T

2 2 1( , , )B P V T

2 1 2( , , )C P V T

2V

1P

2P

B CQ

A BQ
C AQ

Vd Q dU d W C dT PdV

熱力学第1法則に基づく以下の微分表示を用いる

B CW

A BW
C AW

(1)

(2)

(3)

以下の解析では1モルの理想気体からなる系を考える

準静的変化の解析
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準静的変化の熱解析

(2) 等圧変化 0dP
2

2 11
( )

C T

B C P P C BB T
Q d Q C dT C T T Q

(3) 等積変化 0dV

循環過程の全流入熱量A B C A

2
1 2 1

1

2
1 2 1

1

ln ( )( )

ln ( )

A B C A A B B C C A P V
VQ Q Q Q RT C C T T
V

VRT R T T
V

1

1 22
( )

A T

C A V V A CC T
Q d Q C dT C T T Q

(1) 等温変化
2 2 1 2

11 1
1

ln
B V V

A B B AA V V

RT VQ d Q PdV dV RT Q
V V

0dT
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(1) 等温変化

2 2 1 2
11 1

1

ln
V V

A B B AV V

RT VW PdV dV RT W
V V

0dT

(2) 等圧変化 0dP
1

2 2 1 2 2 12
( ) ( )

V

B C C BV
W P dV P V V R T T W

(3) 等積変化 0dV

0C A A CW W

循環過程の全仕事量A B C A

2
1 2 1

1

ln ( )A B C A A B B C C A
VW W W W RT R T T
V

準静的変化の仕事解析

A B C A A B C AQ W
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準静的断熱変化の解析

0V V
dT dV dT dVC P C R
T T T V

P VR C C を用いて

1 1 0P

V

CdT dV dT dV
T C V T V

P

V

C
C

積分して 0ln ( 1) ln ( )T V C 定数

1
1( )TV C 定数

PVT
R

を用いて 2 ( )PV C 定数

および

さらに

ちなみに，等温変化の場合は ( )PV RT 定数

断熱変化 から0Vd Q dU d W C dT PdV
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準静的断熱変化の解析

P

V

PV RT

PV 一定

断熱変化から

以下で，これを実際に計算して確かめてみる

1 1 1( , , )A P V T

2 2 2( , , )B P V T

等温変化

断熱変化

0A B A B A BQ U W
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2

2 11
( )

B T

A B V VA T
U dU C dT C T T

2 2

1 11 1

1 1 1
1 1 2 1 1 1 2 1 1

2 2 1 1 2 1 2 1 1 2

1 1( ) ( )
1 1

1 ( ) ( ) ( ) ( )
1 1 1 /

B V V

A B A V V

P V
V

P V

W d W PdV PV V dV

PV V V PV V PV

C CRPV PV T T T T C T T
C C

断熱変化における以下の関係式を用いると

1 1 2 2 ( )PV PV PV 定数

A BU の計算

A BW の計算

0A B A BU W

準静的断熱変化の解析
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カルノーサイクルによる熱機関

P

V

A

B

C

D

(1) 等温変化

(3) 等温変化

(4) 断熱変化

(2) 断熱変化
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(1)，(2)，(3)，(4)は準静的変化（従って，可逆変化）



カルノーサイクルによる熱機関

V

HQ

LQ

B CW

A BW

D AW

C DW

( , , )B B HB P V T

P

V

( , , )A A HA P V T

( , , )C C LC P V T

( , , )D D LD P V T

(1)

(3)

(4)

(2)

LQ
系に流入する熱を正として描いている

の熱の流入は， の熱の流出を意味するLQ
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カルノーサイクルによる熱機関

(1) 等温変化

(2) 断熱変化

系に流入する熱量

系が外部にする仕事 lnB

A

V B
A B HV

A

VW PdV RT
V ( ＞0 )

系が外部にする仕事 ( )C

B

V

B C V H LV
W PdV C T T ( ＞0 )

A B

HT HQ

B C

等温膨張

断熱膨張

lnB B

A A

B V V H B
H HA V V

A

RT VQ d Q PdV dV RT
V V

熱力学 21



カルノーサイクルによる熱機関

(4) 断熱変化

( ＜0 )系が外部にする仕事 ( )A

D

V

D A V L HV
W PdV C T T

(3) 等温変化

系に流入する熱量

系が外部にする仕事 lnD

C

V D
C D LV

C

VW PdV RT
V ( ＜0 )

LT

CD

A D

等温圧縮

断熱圧縮

LQ

lnD D

C C

D V V L D
L LC V V

C

RT VQ d Q PdV dV RT
V V
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カルノーサイクルによる熱機関

ln ( ) ln ( )

ln ln

T A B B C C D D A

B D
H V H L L V L H

A C

B D
H L

A C

W W W W W

V VRT C T T RT C T T
V V

V VRT RT
V V

T H L TQ Q Q W

循環過程 の流入熱量A B C D A

( ) ln lnB D
T H L H L

A C

V VQ Q Q RT RT
V V

循環過程 の仕事量A B C D A

TQ

TW
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カルノーサイクルの動作モデル

カルノーサイクルの動作モデル

C T H LW Q Q

HQ

LQ

HT

LT

C

HQ

LQ

HT

LT

逆カルノーサイクルの動作モデル

準静的可逆動作が可能

（冷蔵庫の冷却の原理，ただし，
冷蔵庫は準静的動作でないが）

T H LW Q Q
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カルノーサイクルによる熱効率

1 1( )H B L CT V T V 定数

ところで，断熱変化では
1 1( )H A L DT V T V 定数

辺々を割り算して
1 1

CB

A D

VV
V V

CB

A D

VV
V V

ln B
H H

A

VQ RT
V ln lnC B

L L L
D A

V VQ RT RT
V V

1 1L L

H H

Q T
Q T

カルノーサイクルの熱効率 は，

熱源の温度 ， のみで決まるLTHT

1T H L L

H H H

W Q Q Q
Q Q Q

熱効率の定義
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熱力学第2法則

現実の物理現象においては，不可逆な変化が存在する

熱力学第2法則は，熱力学的な過程の中に不可逆過程が存在すること
を認めること

熱力学第1法則と合わせて，熱力学の理論体系の根幹をなす
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熱力学第2法則

HT

LT

C ( )W Q

Q

HT

(A) クラウジウスの原理

他に何の変化も残さずに，熱を低温の物体
から高温の物体に移すことはできない

(B) トムソンの原理

他に何の変化も残さずに，ただ一つの熱
源から熱を取りだし，それをすべて仕事に
変え，自身は元の状態に戻ることは出来
ない

熱力学第2法則

同値 (付録A)

不可能

不可能
Q

(c) オストワルドの原理

第2種の永久機関は存在しない

同値

(A) クラウジウスの原理

(B) トムソンの原理
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不可逆過程の例

真空

0 0 0dU d Q d W

0d Q

0d W

(A)→(B)で，内部エネルギーは変わらない（ ）
その結果，温度も変わらない（ ）

(B)

(A)

断熱

真空に対して仕事はしない
（反作用が無い，のれんに腕押し）

ストッパーを外し，(A)→(B)に断熱変化する時，
これが不可逆変化であることを示す

0dU
0dT

T

T

AV

BV(Ⅰ) (A)→(B)を準静的等温変化で実現する，この時

Q W
(Ⅱ) (A)→(B)が可逆変化であると仮定すると，

(B)→(A)変化も ， で実現可能ということになる0d W 0dT
熱力学 28

次に以下の仮想実験を考える



不可逆過程の例

T T P

V

( , )AA V T

( , )BB V T

(Ⅰ) (A)→(B)準静的等温変化

(A)→(B)変化は不可逆過程

T

T

0d W
で実現

(A)

(B)

AV

BV

BVAV

Q
Q

C ( )W Q

T
Q

熱力学第2法則（トムソンの原理）に反する

(A)→(B) を可逆変化としたことが原因
(Ⅱ) (A)→(B)の逆過程

が可能であると仮定

(Ⅰ)

(Ⅱ)

( )W Q ( )W Q

0dT
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カルノーの定理

温度が一定の2つの熱源の間に働く可逆機関 の熱効率 は，作業物質に
よらずすべて等しく，温度 ， だけで決まり，しかも最大の熱効率となる

同じ熱源の間で働く不可逆過程を含む不可逆機関 の熱効率 は，必ず
より小さい

不可逆過程を含む熱機関の熱効率

C TW

HQ

LQ

HT

LT

C
TW

HQ

LQ

C

C
HT LT

1 1L L

H H

Q T
Q T

1 L

H

Q
Q

等号は も可逆機関の場合C
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不可逆過程を含む熱機関の熱効率

HT

LT

C
TW

H HQ Q

LQ

C

HQ

LQ

TW

HT

LT

T TW W

L LQ Q

C C

0L L T TQ Q W W＞ の関係は熱力学第２法則から実現不可

0L L T TQ Q W W
等号は も可逆機関の場合C

L LQ Q

1 1 1L L L

H H H

Q T Q
Q T Q

である必要がある

0H L

H L

Q Q
T T
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カルノーサイクルからエントロピーを導入

1Q

2Q

WP

V

A

B

C

D

(1) 等温変化

(3) 等温変化

(4) 断熱変化

(2) 断熱変化

1T

2T

流入熱量を正とし，カルノーサイクルを図のように表わす

この時，効率は以下で表わせる

2 2

1 1

1 1Q T
Q T

1 2

1 2

0Q Q
T T
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カルノーサイクルからエントロピーを導入

P

V

1A

1B

31 2 4

1 2 3 4

0QQ Q Q
T T T T

2A
2B

1D
1C

2D

2C

1

1

Q
T

2

2

Q
T

3

3

Q
T

4

4

Q
T

2つのカルノーサイクルを重ねた図のようなサイクルを考える

1 1 2 2

2 2 1 1 1

A B A B
C D C D A

循環過程において次式が成り立つ
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V

P

複数(n/2個）のカルノーサイクルを
図のように重ね合わせて循環過程を
作る，この時次式が成り立つ

1
0

n
k

k k

Q
T

さらに として微細化したカル
ノーサイクルを重ね合わせたものを考
える

n

1
lim 0

n
k

n k k

Q
T

0
C

d Q
T

以下の周回積分で表わせる

カルノーサイクルからエントロピーを導入

k

k

Q
T

1

1

k

k

Q
T
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1C

2C

V

P
A B

( 1) ( 2)
0

B A

C A C B C

d Q d Q d Q
T T T

( 2) ( 2)

A B

B C A C

d Q d Q
T T

可逆過程であることから

周回経路 を経路 で表わすと1 2C CC

( 1) ( 2)

B B

A C A C

d Q d Q
T T

の変化に対して，経路 ， は任意に選べる1CA B 2C

カルノーサイクルからエントロピーを導入
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B

B A A BA

d Q S S S
T

A BS を状態 ， 間のエントロピー差，また，

AS BS
A B

， を状態 ， のエントロピーと定義するA B
エントロピーは状態変数である

微分形で表わすと

d Q dS
T

の積分は ， の状態が与えられれば一意に決まり，次式が成り立つA B A B

d Q TdS

カルノーサイクルからエントロピーを導入

1C

2C

V

P
A B
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断熱変化では から

エントロピー増大法則

P

A

B

V

(1) 断熱不可逆変化

(2) 準静的可逆変化

( ) ( ) ( )
0

B A B

A BC A B A

d Q d Q d Q d Q S S
T T T T不可逆 可逆 不可逆

0d Q

( )
0 0

B

A B A BA

d Q S S S S
T不可逆

A BS S

断熱不可逆変化では，エントロピーが
増大する方向に変化する

なお，等号は断熱変化が準静的（従っ
て可逆）な場合

不可逆変化を含む循環過程では次式の不等式が成り立つ

等号は準静的（従って可逆）変化のみによ
る場合，不等号は不可逆変化を含む場合
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準静的断熱
変化曲線

P

V

外部と断熱された孤立した系において，不可逆変化が起こる場合，変化
は必ずエントロピーが増大する方向に生じる

エントロピーの増大変化は，ストッパー等による制約を取り除くと，自発的
に生じ，エントロピーが極大となるまで続く，極大となる点で熱平衡状態と
なり変化は止まる

エントロピー増大法則

BS
AS

断熱不可逆動作
する領域

A BS S＜

SA BS ＝
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温度の異なる液体の混合のエントロピー（例）

HT LT

MT
2nモル

nモルnモル

P圧力 が一定の環境で， モル，温度 の熱湯と， モル，温度 の
冷水とを混合して， モル，温度 のぬるま湯を作る

HT LT

( )H LT T＞

n
2n MT

n

この時のエントロピーの変化を求める
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内部エネルギーは保存されることから

2P H P L P MnC T nC T nC T 1 ( )
2M H LT T T

混合による熱湯のエントロピー変化 ，冷水のエントロピー変化 は
それぞれ以下で与えられる

HS LS

lnM M

H H

T T P M
H PT T

H

nC dT Td QS nC
T T T

lnM M

L L

T T P M
L PT T

L

nC dT Td QS nC
T T T

0＜

0＞

総合のエントロピー変化 は以下で与えられるTS

2

ln M
T H L P

H L

TS S S nC
T T

温度の異なる液体の混合のエントロピー（例）
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2 22 1 1 0
4 4M H L H L H L H LT T T T T T T T T ＞

2

1M

H L

T
T T

＞

2

ln 0M
T P

H L

TS nC
T T

＞

エントロピーは増大する方向に自発的に変化する，温度 でエントロ
ピーは極大となり，熱平衡状態が実現され，変化は止まる

MT

なお，ぬるま湯から熱湯と冷水を作る変化はエントロピーが減少する方
向の変化であり自発的には決して起こらない

このことから，この変化は不可逆過程である

温度の異なる液体の混合のエントロピー（例）
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エンタルピーと自由エネルギー

例えば，石油などのエネルギー源は燃やして，暖ををとったり，機械運動
に変換したり，電気エネルギーを作り出すことが出来るが，その結果，石
油は など，エネルギーとして使えないものに変わってしまう

これは後戻り出来ない不可逆過程である

しかし，実際には以下のように，エネルギーには有効利用出来る有効エ
ネルギーと有効利用できない無効エネルギーとがある

エネルギーが保存されるのであれば，使われたエネルギーは別の形の
エネルギーとしてどこかに蓄えられるのであるから，省エネルギーなど
必要ないはずである

有効エネルギーは，自由に使えるエネルギーという意味から自由エネル
ギーとも呼ばれ，無効エネルギーは，自由に相対する単語を用いた束
縛エネルギーとも呼ばれ，以下のように与えられる

熱力学 42

全エネルギー＝有効エネルギー + 無効エネルギー

全エネルギー＝自由エネルギー + 束縛エネルギー

2CO



熱力学では，全エネルギーに相当する項をエンタルピーと呼び記号
で表記し，自由エネルギーに相当する項をギブス自由エネルギーと呼び
記号 で表記する，また，束縛エネルギーに相当する項は温度とエント
ロピーの積 で与えられる

すなわち，次式で表わせる

H G TS

G

H

TS

エンタルピーと自由エネルギー
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一方，全エネルギーに相当するエンタルピー は内部エネルギー と
熱力学ポテンシャル を用いて次式でも与えられる

H U
PV

H U U PV

これから，次式の関係がある

H G TS U PV
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エンタルピーと自由エネルギー

なお，全エネルギー における自由エネルギーはギブス自由エネル
ギー であるが，一方，内部エネルギー の中に含まれる自由エネル
ギーはヘルムホルツ自由エネルギー と呼ばれ，次式の関係がある

F U TS G PV

F
UG

H

さらに，等圧変化（ ）する系を考えると（熱力学第1法則から）
次式が成り立つ

0dP

dH dU PdV d Q

( )dH dU d PV dU PdV VdP

を微分形式で表わすと以下となるH

の熱エネルギーの流入により，エンタルピーが 増大することを
示しており， は系の全エネルギーに相当すると捉えることができる

d Q dH
H



G F PV
U TS PV

U F TS

PV

TS

FH G TS
U PV
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H

ヘルムホルツ自由エネルギー

U
G
F
S

T

P
V

ギブス自由エネルギー

エンタルピー

内部エネルギー

エントロピー

圧力

体積

絶対温度

エンタルピーと自由エネルギー



これから，自由エネルギーが減少する時，エントロピーは増大していき，
両者は表裏の関係にある

さらに温度が一定(     )の時には次式となる

0dG TdS

0dT

エンタルピーと自由エネルギー
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孤立系で， が一定の時，次式が成り立つH

( ) 0dH dG d TS dG TdS SdT

エネルギーの有効利用という観点からは，自由エネルギー が高い程
有利といえるが，皮肉なことに， が高い程，系は不安定であり， が
低くなる方向に不可逆的に、自発的に変化（反応）していく

が極小となる点で変化は止まり熱平衡状態となる

G
G G

G



エネルギー変数 ， ， ， の全微分表示による相関関係を求めるH U G F

d Q TdS dU PdV
これは，熱力学第1法則の微分形から導出される

V S

U UdU dS dV TdS PdV
S V

( )dH dU d PV TdS PdV PdV VdP
TdS VdP

熱力学変数の相関関係

P S

H HdH dS dP TdS VdP
S P
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熱力学変数の相関関係

( ) ( )dG dU d TS d PV
TdS PdV TdS SdT PdV VdP

SdT VdP

( )dF dU d TS TdS PdV TdS SdT
SdT PdV

P T

G GdG dT dP SdT VdP
T P

V T

F FdF dT dV SdT PdV
T V
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外部から の粒子が流入する系の場合，熱力学第1法則は以下のよ
うに拡張される必要がある

拡張熱力学第1法則（熱および粒子に対するエネルギー保存則）

粒子数が変動する系の場合

N

Q N U W U P V

Q

系

U W P V
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N

ここで， は化学ポテンシャル（注2）で１粒子当りのギブス自由エネルギー
に相当，従って N GN G

（注2） 化学ポテンシャルは物質の変化（反応）の方向を決める物理パラメータとして化
学分野において重要な役割を持つ，また，化学ポテンシャルは，量子物理および半導体
分野における重要な物理パラメータであるフェルミエネルギー（そのもの）である
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可逆過程では， はエントロピー を用いて以下で表わせるS

d Q TdS

d Q

これから，

dU TdS dN PdV

体積一定（ ）の時，0dV

dU TdS dN TdS dG

U

G

TS

PVFdNTdS

dU

dG

粒子数が変動する系の場合

d Q dN dU d W dU PdV

拡張熱力学第1法則の微分形

H

( )d Q



付録A （A)と(B)が同値の証明

(A) クラウジウスの原理 (B) トムソンの原理

Ⅰ 命題 「(A)ならば(B)」の証明は，対偶「否(B)ならば否(A)」の証明でよい

HT

LT
B

W Q
Q

HT

Q

否(A) 否(B)

(A)と(B）が同値であることの証明は，命題「(A)ならば(B)」の証明および命題
「(B)ならば(A)」の証明により示される

Ⅱ  命題 「(B)ならば(A)」の証明は，対偶「否(A)ならば否(B)」の証明でよい

この動作
が可能 ○

この動作
が可能 ○
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付録A （A)と(B)が同値の証明

HT

LT

否（B)

B
W Q

LT

B

1Q

C

2 1Q Q Q

Q

HT

B C

LT
2 1Q Q Q

2 1Q Q Q

Q

W Q

否（A)否（B)に逆カルノーサイクルを追加

Ⅰ 対偶「否(B)ならば否(A)」の証明
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付録A （A)と(B)が同値の証明

HT

LT LT
1Q

C

2Q

A C

2 1Q Q

2 1W Q Q

否（B)否（A)にカルノーサイクルを追加

Ⅱ 対偶「否(A)ならば否(B)」の証明

2 1W Q Q
1Q

HT

否（A)

LT

HT

1Q
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