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統計力学は

統計力学は，

熱力学系におけるマクロな物理量の振る舞いを，系に含まれる膨大な
数（アボガドロ数 個程度）のミクロな粒子の運動の統
計的処理で説明しようとするものである

ミクロ粒子の動作解析には，ニュートンの運動方程式のかわりに，以下
の解析力学が用いられる

解析力学では， 個の粒子でなる系の状態を位置
および運動量 でなる 次元位相空間の位置ベ
クトル で与え，ベクトル にお
けるエネルギーをハミルトニアン で表わす

， ， は以下のカノニカル（正準）方程式で関係付けられる
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系の状態を表わす位相空間ベクトル はカノニカル（正準）方程式に従
うことから，系の各状態（それぞれが異なるベクトル で表わされてい
る）からなるアンサンブル（集団）はカノニカル アンサンブル（正準集団）
と呼ばれる

系が置かれる外部環境に応じて，古典統計においては，以下の３種類
のカノニカル アンサンブル理論を用いた解析が行われる

統計力学は
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Ⅰ ミクロカノニカル アンサンブル

Ⅱ カノニカル アンサンブル

Ⅲ グランドカノニカル アンサンブル

系は外界に対して孤立

系は大きな熱浴の中に置かれ，熱浴との間でエネルギーのやりとり
が行われる

r

系は大きな熱浴で，かつ，粒子溜の中に置かれ，そことの間でエネル
ギーと粒子のやりとりが行われる



熱浴（温度 ）

4統計力学

エネルギー エネルギー

粒子

熱浴（温度 ）

外界から孤立

T

Ⅰ Ⅱ Ⅲ

系 系

統計力学は

系

T

ミクロカノニカル
アンサンブル

カノニカル
アンサンブル

グランドカノニカル
アンサンブル

粒子溜
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ミクロカノニカル アンサンブル

個の粒子から成る系の状態は 次元位相空間ベクトル で与え
られる，時間の経過と共に系の微視的状態は変化するが，それは
次元位相空間中のベクトル の変化として与えられる

位相空間において，ベクトル を含む微小領域 を考えると， の
形状は時間経過とともに変化するがその体積は変化しない（リウビル
の定理）

不確定性原理（ （ はプランク定数）) により，ベクトル の
取り得る値は連続ではなく，とびとびの値となる，その結果， 次元位
相空間における微小領域 に含まれる微視的状態数は
で与えられ，その値は時間変化しても変わらない（付録A）

孤立系では，ベクトル は時間経過とともに 次元位相空間のエネ
ルギーが一定(         )となる超曲面上を動いてゆき，超曲面上の
すべての取り得る点を平等に動いてそこをカバーする

エルゴード性から，ベクトル の長時間にわたる時間平均は位相空間
中の取り得るベクトル点の位相平均（アンサンブル平均）と等しい
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ハミルトニアン はベクトル における系の全エネルギーであり，
以下で表わせる
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一般に運動エネルギーは の関数，位置エネル
ギーは の関数で表わせるので，さらに以下となる

( ) ( ) ( )E H Kr r r

1 3( , , , , )j Nq q q

( )H r

運動エネルギー 位置エネルギー

r

1 3( , , , , )j Np p p

1 3 1 3( ) ( , , , , ) ( , , , , )j N j NE H K p p p q q qr

ここで，系は，体積 の容器に収められた 個の単原子分子からな
る理想気体であるとすると，位置エネルギーは となり，
は次式となる

( )H r( ) 0r

2 2 2
1 3

1( ) ( )
2 j NE H p p p

m
r

V N

ミクロカノニカル アンサンブル

(1)

(2)

(3)
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次に，この系のエネルギーが の範囲に入る微視的状態の
数 を求めるのであるが

それを求めるのに当たって，まず，エネルギーが 以下となる微視的
状態の総数 を以下の様に求める

1 3 1 33 3

1 33

1( ) j N j NN N

N

j NN

dE dq dq dq dp dp dp
h h

V dp dp dp
h

v

~E E E
( )W W E E

E
( )E

運動エネル
ギーがE以下

容器の体積V

運動エネル
ギーがE以下

1 3j Ndp dp dp

運動エネル
ギーがE以下

の積分は， 次元位相空間において，半径

2mE

3N

3 2NC mEの 次元超球の体積 を求めることにほかなら
ず，次式で与えられる（付録B）

3N

ミクロカノニカル アンサンブル

(4)

全体積V，全エネ
ルギーがE以下



半径

半径 の 次元超球
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3
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2

1 3 3
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N
N

j N Ndp dp dp C mE mE
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ここで， は 関数であり， を偶数とすると

で与えられる

3
2
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2mE
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j
j

p mE

運動エネル
ギーがE以下

運動エネルギーが
以下となる領域

E

ミクロカノニカル アンサンブル

(5)
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これから，
3

32
2

1 33 3
2( ) 2

33
2

N
N N N

j NN N

V VE dp dp dp mE
Nh h N

さらに，これから，系のエネルギーが の球殻の範囲に入る
微視的状態の数 は以下で与えられる

~E E E
( )W W E E

3 1
2( )( )
Nd EW W E E E CE

dE
3
2

2
2

3
2

N

N m EC V
Nh

エネルギーが の球殻

E

E

~E E E

運動エネル
ギーがE以下

ミクロカノニカル アンサンブル

(6)

(7)

(8)
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ボルツマンの原理

状態数 の自然対数をとり，これを で微分するとW E
3 1
2

ln 3 1 3ln 1
2 2

Nd W d N NCE
dE dE E E

今の場合， は粒子数 の単原子分子理想気体の内部エネルギー

のことであり，気体粒子の平均エネルギーが であることから，
以下の関係がある

ボルツマンの原理は，

エントロピー と微視的状態数 には次式の関係があるというもの
である

lnBS k W

WS

先の式(7)で得られた を用いることで，上式が成り立つことを検証するW

E N

3
2 BE N k T

3
2 Bk T

(10)

(9)

(11)



（ と同じ）
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ボルツマンの原理

ln 3 3 2 1
2 2 3 B B

d W N N
dE E Nk T k T

これから

一方，熱力学第1法則から

ln 1Bd k W
dE T

d Q TdS dE PdV

両者の比較から，次式が導ける

1
V

dS
dE T

lnBS k W B

S
kW e（ ）

(12)

(13)

(14)
(9)
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カノニカル アンサンブル

カノニカル アンサンブル理論では，温度 の大きな熱浴の中に置かれ，
熱浴との間でエネルギーのやりとりが行われる系を解析する

解析には，図で示した解析モデルを用いる

T

系1 系2

系M系M-1

系k

系3

系M-2

解析モデルカノニカルアンサンブル

断熱壁

体積V

粒子数N

全エネルギー
（温度 ）

E
T

熱浴（温度 ）

エネルギー

T

系
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カノニカル アンサンブル

すなわち， 個の同様の熱力学的系を考え，それぞれの系は，同一の
体積（ ），同一の粒子数（ 個）を有し，これらは互いに接触し，それぞ
れの間でエネルギーのやりとりができるとする

これらの系全体としては，断熱壁で囲まれて外部とは孤立しており，全
体としてのエネルギーは （温度 ）で一定であるとする

これから，全体系が温度 の熱浴となり，その中で各系がエネルギーの
やりとりをする描像が描ける

T

個の系は，それぞれ，エネルギー のいずれかを有して
おり，各エネルギーをとる系の個数をそれぞれ， とする

これから，次式の制約条件が課される

1 2j j
j

M M M M M

1 1 2 2j j j j
j

E M E M E M E M E

M
V N

E

M 1 2, , ,jE E E
1 2, , ,jM M M

（一定）

（一定）

(15)

(16)

T
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カノニカル アンサンブル

個の系を に分ける組み合わせの数は以下となるM 1 2, , ,jM M M

1 2

!
! ! !j

M
M M M

=個を
に分ける組み合わせ

M 1 2, , ,jM M M

ここで，全体系が取り得る微視的状態数 を求め
る際に考慮すべき重要なパラメータとして縮退がある

縮退は同じエネルギー の状態の数であり， で与えられる

エネルギーが となる 個の系のそれぞれが縮退による 個の状
態を取り得るので，

全体系が取り得る微視的状態数 は次式で表わ
せる

1 2
1 2 1 2

1 2

!( , , , )
! ! !

jMM M
j j

j

MW M M M g g g
M M M

jE jg

jE jM jg

1 2( , , , )jW M M M

1 2( , , , )jW M M M

(17)

(18)
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カノニカル アンサンブル

1M 2M jM

1g 2g jg1E 2E

jE

1 2j j
j

M M M M M

1 1 2 2j j j j
j

E M E M E M E M E

（一定）

（一定）

1 2

!
! ! !j

M
M M M

=個を
に分ける組み合わせ

M 1 2, , ,jM M M

エネルギー

縮退

系の個数

1 2
1 2 1 2

1 2

!( , , , )
! ! !

jMM M
j j

j

MW M M M g g g
M M M

制約条件

(18)

(17)

(15)

(16)

縮退を考慮して
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カノニカル アンサンブル

上記制約条件式（15），（16）のもとで， が最大（極大）となる

の組み合わせを求める1 2, , ,jM M M
W

が最大（極大）となる時，エントロピーも最大（極大）になり，熱平衡状
態となる

この時， がエネルギーが となる実現確率を与えることに
なる

/j jP M M jE

W

とその自然対数 は互いに単調の関係にあるので， が最大
（極大）となる の条件を求めることは が最大（極大）
となる の条件を求めることと同値である

W lnW
W1 2, , ,jM M M

lnW

1 2, , ,jM M M
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カノニカル アンサンブル

1 2
1 2

1 2

!ln ln
! ! !

ln ! ln ! ln

ln ln ln

ln ln ln

jMM M
j

j

j j j
j j

j j j j j
j j

j j j
j

MW g g g
M M M

M M M g

M M M M M M M g

M M M g

制約条件式(15)，(16)の下で，式（19）を最大とする
の条件を求める

1 2, , ,jM M M

ln ! lnN N N N

これは以下のようにラグランジュの未定乗数法を使って解ける

(19)

は，スターリングの近似公式 を用いて
次式のように変形できる
lnW
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カノニカル アンサンブル

式(19)が極大となるところでは全微分が0となる，すなわち

ln ln ln ln

ln ln ln

ln 1 0

j j j
j

j j j j
j j

j
j

j j

d W d M M M g

M M M g dM
M

Mg
dM

M

制約条件式(15)，（16）は定数なので，その全微分は0となり，次式が
得られる

0j j
j j

d M dM

0j j j j
j j

d E M dM E

(20)

(21)

(22)
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カノニカル アンサンブル

これから，適当な未定乗数 ， を用いて次式が得られる

ln 1

ln 1 0

j
j j j j

j j jj

j
j j

j j

Mg
dM dM dM E

M

Mg
dM E

M

ここで， ， と置き換えると次式となる1

ln 0j
j j

j j

Mg
dM E

M

は0でないので，上式が成り立つためには以下であることが必要

ln 0j
j

j

Mg
E

M

(23)

(24)

jdM

(25)
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カノニカル アンサンブル

これから，以下が得られる

jEj
j j

M
P g e

M
(26)

は系のエネルギーが となる実現確率である/j jP M M jE

式(26) から次式が得られる

1jEj
j j

j j j

M
P g e

M

これから，さらに

jE
j

j
Z e g e

1 jEj
j j

M
P g e

M Z

(27)

(28)

(29)

jE
j jM Mg e
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カノニカル アンサンブル

次に について調べる

ln ln ln ln

ln (ln ln ) ln

( )

j j j j i
j j j

j j i j j i
j j j

j j
j

W M M M M M g

M M M M g E M g

M E M E

式（19）と式（26）用いてまとめると次式が得られる

ln 1
B

d W
dE k T

さらに が変化するとし，両辺を で微分すると，式（12）との比較か
ら次式が得られる

E

(30)

(31)

E
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カノニカル アンサンブル

jE

j

j B

E
E k T

j j
j j

Z g e g e

1 1 j

j B

E
Ej k T

j j j

M
P g e g e

M Z Z

j

B

E
k Te

以上より，カノニカルアンサンブルにおいて系のエネルギーが となる
確率 は以下で与えられる

：ボルツマン因子と呼ばれる

1
Bk T

jP

系のエネルギーの期待値 は次式で与えられるE

1 1 j

j B

E
E k T

j j j j j j
j j j

E E P E g e E g e
Z Z

(32)

(33)

(34)

：分配関数または状態和と呼ばれるZ



ところで，分配関数の自然対数 を で微分することによっても系
のエネルギー期待値 を計算できる

24統計力学

カノニカル アンサンブル

また， で微分することによっても計算できる

ln ln 1 jE
j j j j

j j

d Z d Z dZ E g e E P E
d dZ d Z

T

2

2 2

ln ln 1 1

1 1

jE
j j

j B

j j
jB B

d Z d Z dZ d E g e
dT dZ d dT Z k T

E P E
k T k T

2 lnB
dE k T Z

dT

lndE Z
d

ln Z
E

(35)

(36)
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エネルギーのゆらぎ

確率変数のゆらぎは確率分布の分散または標準偏差で表わされる

ここでは，確率変数としてのエネルギー の分散 を，定積モ
ル比熱 の導出公式を用いて，以下のように求める

2

2
2

2
2

2
2

2 2 22 2 2
2

1

1

j

j j

j j

E
V B j j

jV

E E
j j j j

j j
B

E E
j j j j

j j
B

B B
B

E E
C k E g e

T T Z

ZZ E g e E g e
k

Z

Z E g e E g e
k

Z

k E E k E E
k T

2EE
VC

(37)
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エネルギーのゆらぎ

例として，1モルの単原子分子理想気体を考える
平均エネルギー ，定積モル比熱 ，および
分散 は以下のように与えられる

123 / 2 1 10
3 / 2 3 / 2

A B
E

A B A

N k TEr
E N k T N

VC

236.022 10AN

3
2 A BE N k T 3

2V A B
V

E
C N k

T
2 2 2 23

2B V B AE k T C k T N

2E
E

はアボガドロ数

ゆらぎの指標を与える は以下となる/Er E E

ゆらぎはほとんど無視でき，系の内部エネルギー
を測定するとほとんど必ず と観測されるE

E

2 E

jE

jP

式（37）を用いて
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コラム -エントロピー増大法則について-

微視的状態のそれぞれを系が占有する確率は等しい（等確率の原理），
その結果，微視的状態を多く含む範囲を系が占有する確率が増大するこ
とになる，粒子数が膨大な系ではその現象が顕著に現れる

ストッパーなどによる制約を解除すると，系はそれぞれの微視的状態を
平等に動き，結果，微視的状態を多く含む範囲にとどまる確率が増大し，
極大となるところで落ち着く，このことが，微視的状態数の自然対数で与
えられるエントロピーが増大する方向に自発的に変化し，極大となる状
態で熱平衡となる現象として現れる（エントロピー増大法則）

ところで，熱力学においてエントロピー変化 と自由エネルギー変化
とは互いに表裏の関係にある（ ) ことが知られている

上記のエントロピーが増大する動作は占有確率の大きな状態に系が変
化していくという確率の問題として理解される，これに対し，自由エネル
ギーの減少の動作は，エネルギーが高く不安定な状態から，低く安定し
た状態に変化する現象として理解される，

動作原理が全く異なると思われる両者（ と ）の動作が表裏の関
係にあるのはどういうことなのだろうか？興味深い

dS dG
0TdS dG

dS dG
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グランドカノニカル アンサンブル

グランドカノニカル アンサンブル理論では，大きな熱浴（温度 ）で，かつ，
粒子溜の中に置かれ，そことの間でエネルギーと粒子のやりとりが行われ
る系を解析する

解析には，図で示した解析モデルを用いる

T

系k

系M-2

解析モデル

断熱壁

体積V

全エネルギー
（温度 ）
全粒子数

E
T

グランドカノニカル
アンサンブル

TN
系M系M-1

系1 系2 系3

エネルギー

粒子

熱浴（温度 ）

系

T
粒子溜
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すなわち， 個の同様の熱力学的系を考え，それぞれの系は，同一の
体積（ ）を有し，これらは互いに接触し，それぞれの間でエネルギーお
よび粒子のやりとりができるとする

これらの系全体としては，断熱壁で囲まれて外部とは孤立しており，全
体としてのエネルギーは （温度 ）および粒子数は で一定であると
する

T

M
V

TNE

グランドカノニカル アンサンブル

解析は，粒子数に関するパラメータが増えたことにより煩雑になるが，カ
ノニカル アンサンブルの場合と同様の方法でおこなうことができる

これから，全体系が大きな熱浴（温度 ）で，かつ，粒子溜となり，その中
で各系がエネルギーおよび粒子のやりとりをする描像が描ける

T



個の系は，それぞれ，エネルギーおよび粒子数に応じて

， のいずれかのエネルギー

状態をを有しており，各エネルギーをとる系の個数をそれぞれ，

， とする

これから，次式の制約条件が課される

30統計力学

, 0,1 0,2 ,
,

N j N j
N j

M M M M M

, , 0,1 0,1 0,2 0,2 , ,
,

N j N j N j N j
N j

E M E M E M E M E

( 1, 2, , , )j j

（一定）

（一定）

グランドカノニカル アンサンブル

M ,N jE

( 0,1, , , )N N

,N jM

( 0,1, , , )N N ( 1, 2, , , )j j

, 0,1 0,2 ,
,

0 0N j N j T
N j

N M M M N M N （一定）

(38)

(39)

(40)
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個の系を に分ける組み合わせの数は以下となるM ,N JM

個を
に分ける組み合わせ

M

さらに，エネルギーが となる 個の系のそれぞれが縮退による

個の状態を取り得るので，

全体系が取り得る微視的状態数 は次式で表わせる

,

,0 ,1 0,2 1,1 1,2

, ,
,,

,

0,1 0,2 1,1 1,2 ,
0,1 0,2 1,1 1,2 ,

!
!

!
! ! ! ! !

N j

N j

M
N j N j

N jN j
N j

MM M M M
N j

N j

MW M g
M

M g g g g g
M M M M M

,N jE ,N jM

,N jg

,N jW M

グランドカノニカル アンサンブル

,N JM
, 0,1 0,2 1,1 1,2 ,

,

! !
! ! ! ! ! !N j N j

N j

M M
M M M M M M (41)

(42)
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,1NM ,2NM ,N jM

,1Ng ,2Ng ,N jg,1NE ,2NE ,N jE
エネルギー

縮退

系の個数

グランドカノニカル アンサンブル

粒子数 N

0

1粒子数

粒子数
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上記制約条件式（38），（39），（40）のもとで， が最大（極大）

となる の組み合わせを求める

が最大（極大）となる時，エントロピーも最大（極大）になり，

熱平衡状態となる

この時， がエネルギーが となる実現確率を与える, , /N j N jP M M ,N jE

とその自然対数 は互いに単調の関係にあるので， が最大

（極大）となる の条件を求めることは が最大（極大）となる

の条件を求めることと同値である

lnW
W

lnW

グランドカノニカル アンサンブル

,N jW M

,N jM

,N jM

,N jW M

W

,N jM
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,
,

,,
,

, , ,
, ,

, , , , ,
, ,

, , ,
,

!ln ln
!

ln ! ln ! ln

ln ln ln

ln ln ln

N jM
N j

N jN j
N j

N j N j N j
N j N j

N j N j N j N j N j
N j N j

N j N j N j
N j

MW g
M

M M M g

M M M M M M M g

M M M g (43)

は次式のように変形できるlnW

グランドカノニカル アンサンブル

ラグランジュの未定乗数法を用いて，制約条件式（38），（39），（40）のも

とで，式(43)が最大（極大）となる の組み合わせを求める,N jM
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式(43)が極大となるところでは全微分が0となる，すなわち

, , , ,
, ,

,
,

, ,

ln ln ln ln

ln 1 0

N j N j N j N j
N j N j

N j
N j

N j N j

d W M M M g dM
M

Mg
dM

M

制約条件式(38)，（39），（40）は定数なので，その全微分は0となり，
次式が得られる

, ,
, ,

0N j N j
N j N j

d M dM

, , , ,
, ,

0N j N j N j N j
N j N j

d E M dM E

(44)

(45)

(46)

グランドカノニカル アンサンブル

, ,
, ,

0N j N j
N j N j

d NM dM N (47)



,
, , , , ,

, , , ,,

,
, ,

, ,

ln 1

ln 1 0

N j
N j N j N j N j N j

N j N j N j N jN j

N j
N j N j

N j N j

Mg
dM dM E dM NdM

M

Mg
dM E N

M

36統計力学

グランドカノニカル アンサンブル

これから，適当な未定乗数 ， ， を用いて次式が得られる

ここで， ， ， と置き換えると次式となる1

,
, ,

, ,

ln 0N j
N j N j

N j N j

Mg
dM E N

M

(48)

(49)

(50)

は0でないので，上式が成り立つためには以下であることが必要,N jdM

,
,

,

ln 0N j
N j

N j

Mg
E

M
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グランドカノニカル アンサンブル

これから，以下が得られる

,,
, ,

N jE NN j
N j N j

M
P g e

M
(51)

は系のエネルギーが となる実現確率である, , /N j N jP M M ,N jE

式(51) から次式が得られる

(52),,
, ,

, , ,
1N jE NN j

N j N j
N j N j N j

M
P g e

M

これから，さらに

(54)

,
,

,

N jE N
G N j

N j
Z e g e

,,
, ,

1 N jE NN j
N j N j

G

M
P g e

M Z

(53)

; 大分配関数または大きな状態和と呼ばれるGZ
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グランドカノニカル アンサンブル

次に と は以下で与えられる（導出の詳細は付録C参照）

1
Bk T

Bk T

； 化学ポテンシャル（注1）

(55)

(56)

（注1）

化学ポテンシャル は１粒子当りのギブス自由エネルギーに相当

物質の変化（反応）の方向を決める物理パラメータとして化学分野にお
いて重要な役割を持つ

また，量子物理および半導体分野における重要な物理パラメータであ
るフェルミエネルギー（そのもの）である
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グランドカノニカル アンサンブル

以上の結果を用いて， および は以下となるGZ

,

,

( )
( )

, ,
, ,

N j

N j B

E N
E N k T

G N j N j
N j N j

Z g e g e

,

,

( )
( ),

, , ,
1 1 N j

N j B

E N
E NN j k T

N j N j N j
G G

M
P g e g e

M Z Z

,N jP

(57)

(58)

エネルギーの期待値 および粒子数の期待値 は次式で与えら
れる

E N

,( )
, , , ,

, ,

1 N jE N
N j N j N j N j

N j N jG

E E P E g e
Z

,( )
, , , ,

, ,

1 N jE N
N j N j N j N j

N j N jG

N N P N g e
Z

(59)

(60)



40統計力学

グランドカノニカル アンサンブル

,( )
,

,

ln ln 1 N jE NG G G
N j

N jG G

Z Z Z Ng e N
Z Z

ln ln1 G G
B

Z Z
N k T

,( )
, ,

,

ln ln 1 N jE NG G G
N j N j

N jG G

Z Z Z E g e E
Z Z

2ln lnG G
B

Z Z
E k T

T

大分配関数の自然対数 を用いて，系のエネルギーの期待値
および粒子数の期待値 は以下のように表わせる

ln GZ E
N

(61)

(62)
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量子統計 -フェルミ粒子とボース粒子-

量子効果が無視できなくなる超ミクロな粒子でなる系の解析には古典統
計に変わり量子統計を使う必要がでてくる

古典統計では粒子の運動は位置 と運動量 で決
定される，それに対して量子統計では粒子の状態は波動関数 で表
わされる

波動関数の性質から，粒子はフェルミ粒子とボース粒子の2種類に分類
されることが導ける，以下でその導出を行う

まず，1粒子の場合を考える

運動状態は複素関数である波動関数 で表わせ，
に粒子が存在する確率は で与えられ，
全空間にわたる積分は1となるように規格化されている

すなわち，次式が成り立つ

2( ) ( ) ( ) 1d d1 1 1 1 1q q q q q

2( , , )1q q ( , )1 2p ,p

( )1q
2( ) ( ) ( )d d1 1 1 1 1q q q q q

1, d1 1q q q

(63)
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波動関数 は，複素因子 の任意性を有する

なぜなら， を掛けて としても，以下のように粒子の存在確
率に変化が生じない

( )1q ie

( )ie 1q

次に，同種の2個の粒子から成る系を考える

この波動関数を とし，粒子1の運動状態が ，粒子2の運
動状態が とする

この時，粒子1の運動状態が ，粒子2の運動状態が である場合の
波動関数は と表わせる

2

2

( ) ( ) ( )

( ) ( ) ( )

i i ie e e1 1 1

1 1 1

q q q

q q q

ie

(64)

( , )1 2q q 1p
2p

2p 1p
( , )2 1q q

一方，量子力学では同種の複数の粒子は本質的に区別がつかないとし
て解析される必要がある

量子統計 -フェルミ粒子とボース粒子-
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これから，これら2つの波動関数は次式の関係を持つと考えられる

( , ) ( , )ie1 2 2 1q q q q ( , ) ( , )ie2 1 1 2q q q q

これから，次式が成り立つ
2

( , ) ( , ) ( , )i ie e1 2 2 1 1 2q q q q q q

これから，以下の2通りの場合が成り立つ必要がある

( , ) ( , )1 2 2 1q q q q1ie( )ⅰ

1ie ( , ) ( , )1 2 2 1q q q q( )ⅱ

同様に

(65)

(66)

(67)

粒子の入れ替えに対して符号を変えて不変（反対称）

このような粒子をフェルミ粒子と呼ぶ，電子，陽子，中性子などがある

粒子の入れ替えに対して不変（対称）

このような粒子をボース粒子と呼ぶ，光子などがある

量子統計 -フェルミ粒子とボース粒子-
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( )ⅰ フェルミ粒子の時

2つの粒子1，2が互いに独立して運動することを考え，粒子1，2のそれぞ
れの波動関数を ， とすると, 波動関数 は以下の
ように表わすことができる

1( )1q 2 2( )q ( , )1 2q q

1 2 1 2
1( , ) ( ) ( ) ( ) ( )
21 2 1 2 2 1q q q q q q

( , ) ( , )1 2 2 1q q q q

(68)

1 2 1 2
1( , ) ( ) ( ) ( ) ( )
21 2 1 2 2 1q q q q q q

( )ⅱ ボース粒子の時 ( , ) ( , )1 2 2 1q q q q

(69)

量子統計 -フェルミ粒子とボース粒子-
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フェルミ粒子の場合，2つ以上の粒子が同じ量子状態を占有すること
は出来ない，１つの量子状態を占有出来るのは最大で1個だけである
（パウリの原理またはパウリの排他律）

( )ⅱ ボース粒子の場合

問題は生じず，同じ量子状態を何個の粒子でも占有することが出来る

1 1
1( , ) 2 ( ) ( )
21 2 1 2q q q q (71)

ここで，2つの粒子1，2が同じ状態，すなわち となる場合を考える1 2

( )ⅰ フェルミ粒子の場合

1 1 1 1
1( , ) ( ) ( ) ( ) ( ) 0
21 2 1 2 2 1q q q q q q

上式は，この状態が存在しないことを意味する

(70)

量子統計 -フェルミ粒子とボース粒子-
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次に 個の同種の粒子からなる系（同種粒子多体系）の量子統計的
な表記について述べる

N

量子状態の1つ1つに番号を付け，また， 番目の量子状態を占める粒
子数を とする

この時

jn
j

フェルミ粒子の場合は， or の2とおりしかない

ボース粒子の場合は， であり， は任意
の個数（自然数）を取り得る

( )ⅰ

( 1, 2, )j0,1, 2,jn( )ⅱ

同種粒子多体系の大分配関数

解析にはグランドカノニカル アンサンブル理論を用いる，すなわち，同
種粒子多体系の全粒子数 も と変化すると考えて大分
配関数（大きな状態和） を用いる

N 0,1, 2,N
GZ

以下で，同種粒子多体系において1つの量子状態（1粒子量子状態）を
粒子が占有する際の占有分布特性について解析する

0jn 1 ( 1, 2, )j

jn

GZ
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式（58）で与えられた はこの場合，以下のように書き表わされるGZ

,
( )

( )

, 0

( )

0

j j j
N j j j

j
j

j j
j

j
j

n n
E N

G
N j N n N

n

N n N

Z e e

e

式（72）のままでは解析に適さないので，解析に適した形に変形する

それを行うため，まず， フェルミ粒子， ボース粒子のそれぞれに
ついて簡単な例で具体的に書き下して検討する

その後，一般の場合について定式化する

( )ⅰ ( )ⅱ

同種粒子多体系の大分配関数 GZ

(72)



ここで， である
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この場合， の取り得る場合の数は以下の8通りである1 2 3( , , )n n n

(0,0,0)0N
1N
2N
3N

(1,0,0) (0,1,0)
(0,1,1)
(0,0,1)

(1,0,1)
(1,1,1)

(1,1,0)

の時

の時

の時

の時

これから，式（72）の計算は ， ,       からなる
８通りの計算を行うことと等しい

これから式（72）は以下のように変形できる

1 0,1n 2 0,1n 3 0,1n

1 2 3( , , )n n n
1 2 3( , , )n n n
1 2 3( , , )n n n

1 2 3( , , )n n n

同種粒子多体系の大分配関数 GZ

フェルミ粒子の場合( )ⅰ

1 2 3( , , )n n nとし，それぞれを占有する粒子数を とする
0,1jn ( 1, 2,3)j

1 2 3, ,
ここでは，量子状態は3つしかないとし，各量子状態のエネルギーは

N が 以上は存在しない4
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( )

1
1 j

G
j

Z e

1 2 3( , , , )n n n
以上は量子状態が3つの場合であるが，これを一般の量子状態の粒
子数表示 に拡張することにより は次式のように表わ
すことが出来る

GZ

同種粒子多体系の大分配関数 GZ

1 1 2 2 3 3

1 2 3

3 31 1 2 2

1 2 3

1 1 1
( ) ( ) ( )

0 0 0

1 1 1
( )( ) ( )

0 0 0

3 31
( ) ( )

01 1
1j j j

j

n n n
G

n n n

nn n

n n n

n

nj j

Z e

e e e

e e (73)

(74)
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ボース粒子の場合

1 2( , )n n
ここでは，量子状態はさらに簡単に2つしかないとし，各量子状態のエ
ネルギーは とし，それぞれを占有する粒子が となる場合
を考える，ボース粒子では である0,1, 2,jn ( 1, 2)j

1 2,

( )ⅱ

同種粒子多体系の大分配関数 GZ

この場合， の取り得る状態は以下のようになり，総粒子数 は
際限なく大きくなる

1 2( , )n n

0N
1N
2N
3N

の時

の時

の時

の時

N

1 2( , )n n (0,0)
1 2( , )n n
1 2( , )n n
1 2( , )n n

(1,0)
(2,0)
(3,0)

(0,1)
(1,1) (1, 2)
(2,1) (1, 2) (0,3)
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この場合，式（72）は以下のように変形できる

1 1 2 2 1 1 2 2

1 2

1 1 2 2

1 2

( ) ( ) ( ) ( )

0 0 0

2
( )( ) ( )

0 0 01

2

( )
1

1
1

j
j

j j

j

j

n n n n
G

N n nn N

nn n

n n nj

j

Z e e

e e e

e

同種粒子多体系の大分配関数 GZ

j＞

( ) ( ) ( )

0

( )

1

1
1

j j j j

j

j

n j

n
e e e

e

上式の最後の関係は以下から得られる

(75)

(76)
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1 2 3( , , , )n n n
以上は量子状態が2つの場合であるが，これを一般の量子状態の粒
子数表示 に拡張することにより は次式のように表わ
すことが出来る

GZ

( )
1

1
1 jG

j

Z
e

同種粒子多体系の大分配関数 GZ

(77)
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フェルミ・ディラック統計

系の粒子数 は1粒子量子状態を占有する粒子数 と以下の関係
を有する（フェルミ粒子，ボース粒子にかかわらず）

1 2 3
1

j
j

N n n n n

これから の期待値 は の期待値 と以下の関係を有するN

jnN

N jn

1 2 3
1

j
j

N n n n n

式（62）から は大分配関数 を用いて求めることができる，さら
にフェルミ粒子の場合には，式（74）を適用して次式が得られる

( )

1

( )
( )

( ) ( )
1 1 1

ln1 1 ln 1

1 1 1ln 1
1 1

j

j
j

j j

G

j

j j j

Z
N e

ee
e e

N GZ

jn

(78)

(79)

(80)
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フェルミ・ディラック統計

式（79）と式（80）との比較から，フェルミ粒子に対する は以下で与
えられる

( ) 1 ( )

1 1
1

1
j

j
B

j
k T

n
e

e

jn

上式から，連続型のフェルミ分布関数 を以下のように定義する

1( ) ( )

1 1( )
1

1B

F
k T

f
e

e

( )Ff

このフェルミ分布関数 は，エネルギーが の量子状態を占める
粒子数を表わし，フェルミ粒子の場合には1つの量子状態を占有できる
粒子数は である

( )Ff

0 ( ) 1Ff

(81)

(82)

なお， が1以下の小数値をとる部分については粒子の占有確率と
考えればよい

( )Ff
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フェルミ・ディラック統計

( )Ff

( )F

10

j

( 1, 2, )j

0T
0T

の時， の特性は図の赤線となり,                 で とな
り， で となる，ここで， はフェルミエネルギーと呼ば
れる，これにたいして の時， は図の青線のようになる

0T
)F＞ (=

( ) 1Ff)F＜ (=

( ) 0Ff F

0T＞ ( )Ff

( )Ff

の極限では， となる量子状態を粒子が１つづつ占有し
ていく，これから，フェルミ粒子では絶対零度（ ）でも系は有限のエ
ネルギーを持つことになる

0T j F

0T
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式（62）から は大分配関数 を用いて求めることができる，さら
にボース粒子の場合には，式（77）を適用して次式が得られる

N GZ

( )
1

( )
( )

( )
1 1

( )
1

ln1 1 1ln
1

1 1ln 1
1

1
1

j

j
j

j

j

G

j

j j

j

Z
N

e

ee
e

e

式（79）と式（83）との比較から，ボース粒子に対する は以下で与え
られる

( ) 1 ( )

1 1
1

1
j

j
B

j
k T

n
e

e

jn

ボース・アインシュタイン統計

(83)

(84)
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ボース・アインシュタイン統計

このボース分布関数 は，エネルギーが の量子状態を占める粒子
数を表わし，ボース粒子の場合には であり，1つの量子状態を何
個でも粒子が占有できる

( )Bf
( ) 0Bf

ボース分布関数の化学ポテンシャルは， となっている0

上式から，連続型のボース分布関数 を以下のように定義する

1( ) ( )

1 1( )
1

1B

B
k T

f
e

e

( )Bf

図に の時，温度 をパラメータにした 特性を示す

の極限では において となり， の量子状態
をすべての粒子（この場合 ）が占有し，それ以外の量子状態は粒子が
占有しないことになる（ボース・アインシュタイン凝集と呼ばれる現象）

( )Bf0 T

0T 0 ( )Bf 0
N

(85)

なお， が1以下の小数値をとる部分については占有確率と考えれば
よい

( )Bf
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ボース・アインシュタイン統計

( )Bf10

HT

MT

LT



（ ）の不確定性を有する，記号～は大
雑把にというくらいな意味で使われているが，ここでは， とする

その結果，

不確定性原理から，位置 と運動量 は同時に確定することはできず
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付録A 微小領域に含まれる微視的状態数

q p
q p h

q p h
346.626 10 ( )h J s

6N

ベクトル を含む微小領域 を考える
時， ， は ， に比べて十
分に大きいとする，この様子を図に示す

この時， 次元位相空間において ,                              を用いて
形成される超微細キューブの超体積は となる

1 3 1 3( )j N j Nq q q p p pr

1 3 1 3j N j Nd dq dq dq dp dp dpvr
jdq jdp

jpjq

6N jq jp
3Nh

( 1,2, ,3 )j N ( 1,2, ,3 )j N

( 1, 2, ,3 )j N

次元位相空間における状態ベルトル
は連続に変化することはできず，とびとびの値を持って変化することにな
る（位相空間は離散化される）

ベクトル を含む微小領域 の中には，このキューブが 個
含まれ，これが微小領域 に含まれる微視的状態数となる

r 3/ Ng d hv
dv

dv
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dvリウビルの定理より，微小領域 の大きさは時間変化によって変わら
ないことから，そこに含まれる微視的状態数 も変化しない

3/ Ng d hv

h

jq jq jq

jp

jp
jp

jdp

jdq

面積

付録A 微小領域に含まれる微視的状態数
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付録B N次元超球の体積

図に で与えられる 次元超球の様子を示す
2 2 2 2

1 2 Np p p R

が2および3の時には，その体積はそれぞれ， （半径 の円の

面積）， （半径 の球の体積）となる

2R
34

3
R

N R

R

N

半径 の 次元超球R N

2 2

1

N

j
j

p R

次元超球の球殻

dR

R

N

( )NC R ( )NS R dR

1p
2p

Np

半径 R

1p
2p

Np
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付録B N次元超球の体積

この延長から， が一般の時の超球の体積 は以下の形で与え
ることができると考えられる，

( )NC RN

N Na

2 2 2
1 2( )

1 2
Np p p

N NI e dp dp dp

解析テクニックとして，以下の 変数関数 の 重積分
を考える

2 2 2
1 2( )Np p peN NIN

( 1)B

これから， が一般の場合の超球の体積は を求めることになる

( ) N
N NC R a R

( 2)B

ガウス積分公式 を用いると， は以下となる
2

/axe dx a NI
22 2

1 2 2
1 2

N

N
pp p

N NI e dp e dp e dp ( 3)B



63統計力学

付録B N次元超球の体積

ここで，半径 の 次元超球の表面積 は，式（B1）を で微分し
て以下で与えられる

1( ) ( ) N
N N N

dS R C R Na R
dR

R N ( )NS R R

( 4)B

これから，式（B2)の 重積分は，以下で与えられる
2 2 2
1 2

2 2

( )
1 2

1
1 2

0 0 0

1
2

0

1( )
2

2

Np p p
N N

N
R R N t

N N N

N
tN

I e dp dp dp

e S R dR e Na R dR e Na t dt
t

Na e t dt ( 5)B

N
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付録B N次元超球の体積

以下の 関数を用いると

式（B5)はさらに以下となる

1

0
( ) te t dt

2 2
N

N
Na NI

( 6)B

( 7)B

式（B3)と式（B7)から， を消去して，以下が得られるNI

2

2 2

N
NNa N 22

2

N

Na
NN

( 8)B

これから，半径 の 次元超球の体積 は以下で与えられるR N ( )NC R

22( )

2

N

N
NC R R

NN
( 9)B
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付録B N次元超球の体積

関数の定義

1

0
( ) te t dt

関数の性質

(1) 1 1
2

( 1) ( )

( 1) !n n ( 0,1, 2, )n

( 0)＞
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付録C と の導出

まず，式（53）で与えられる大分配関数 の自然対数を考える

,
,

,
ln ln N jE N

G N j
N j

Z g e

,

, ,

, ,

, ,
, ,

, , ,
, ,

1 1ln ln ln

1 1

1 1

N j N j

N j N j

G G
G G G

G G

E N E N
N j N j

N j N jG G

E N E N
N j N j N j

N j N jG G

Z Zd Z Z d Z d d d
Z Z

g e d g e d
Z Z

E g e d Ng e d
Z Z

E d N d

( 1)C

GZ

を， の関数とみて全微分すると，ln GZ

( 2)C



付録C と の導出

系

dE PdV
dN

dE TdS dN PdV

まず，拡張熱力学第一法則から

( )TdS
d Q

別の熱力学関係式から，式（C2）の に対応する熱力学変数を
求める

, , ln GZ

67統計力学

( 3)C
G E TS PV

E F TS

PV

TS

F

H E PV
G TS
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付録C と の導出

G E TS PV自由エネルギー の関係式 を全微分し，さらに式（C3)
を用いることにより

G

( ) ( )
( ) ( )

dG dE d TS d PV
TdS dN PdV d TS d PV

dN SdT VdP ( 4)C

( )d PV PdV VdP から，式（C6)はさらに次式に変形できる

( )d PV Nd SdT PdV ( 7)C

G N

dG dN Nd

0Nd SdT VdP

さらに から

（ギブス・デュエムの関係式）

( 5)C

式（C4），（C5）から を消去してdG
( 6)C
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付録C と の導出

次に， の全微分を求めてみる
B

PV
k T

2
1 ( )

B B

PV d PV T PV dTd
k T k T

( 8)C

これに式（C7)を代入して，

2

2 2

1 ( )

( ) ( )
B B

B B B B B

PV Nd SdT PdV T PV dTd
k T k T

Nd PdV ST PV dT Nd PdV E G dT
k T k T k T k T k T

( 9)C
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付録C と の導出

さらに， の関係を用いて2
d dTd
T T T

2 2

2

( )

( )
B B B B

B B B

PV N dT PdV E G dTd d
k T k T T k T k T

N PdV E G N dTd
k T k T k T

( 10)C

さらに， の関係を用いてG N

2
B B B B

PV N PdV EdTd d
k T k T k T k T

( 11)C
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付録C と の導出

式（C2)と式（C12)の比較から以下が得られる

1
Bk T Bk T

ln G
B

PVZ
k T ( 13)C

さらに， が一定（ ）の時0dVV

2

1
B B B

B B

PV E dT Nd d
k T k T k T

Ed Nd
k T k T

( 12)C


